메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김형규 (한국원자력연구원)
저널정보
한국트라이볼로지학회 Tribology and Lubricants Tribology and Lubricants 제38권 제3호
발행연도
2022.6
수록면
73 - 83 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper is concerned with an analysis of a surface edge crack emanated from a sharp contact edge. For a geometrical model, a square wedge is in contact with a half plane whose materials are identical, and a surface perpendicular crack initiated from the contact edge exists in the half plane. To analyze this crack problem, it is necessary to evaluate the stress field on the crack line which are induced by the contact tractions and pseudo-dislocations that simulate the crack, using the Bueckner principle. In this Part I, the stress filed in the half plane due to the contact is re-summarized using an asymptotic analysis method, which has been published before by the author. Further focus is given to the stress field in the half plane due to a pseudo-edge dislocation, which will provide a stress solution due to a crack (i.e. a continuous distribution of edge dislocations) later, using the Burgers vector. Essential result of the present work is the corrective functions which modify the stress field of an infinite domain to apply for the present one which has free surfaces, and thus the infiniteness is no longer preserved. Numerical methods and coordinate normalization are used, which was developed for an edge crack problem, using the Gauss-Jacobi integration formula. The convergence of the corrective functions are investigated here. Features of the corrective functions and their application to a crack problem will be given in Part II.

목차

Abstract
1. 서론
2. 해석
3. 결과 및 토의
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0