메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지민 (한성대학교) 김인모 (한성대학교) 김명선 (한성대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제6호
발행연도
2022.6
수록면
842 - 849 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기술의 발달로 무인 자동차, 드론, 로봇 등의 임베디드 시스템 분야에서 DNN을 활용하는 사례가 많아지고 있다. 대표적으로 자율주행 시스템의 경우 정확도가 높고 연산량이 큰 몇 개의 DNN들을 동시에 수행하는 것이 필수적이다. 하지만 상대적으로 낮은 성능을 갖는 임베디드 환경에서 다수의 DNN을 동시에 수행하면 추론에 걸리는 시간이 길어진다. 이러한 현상은 추론 결과에 따른 동작이 제때 이루어지지 않아 비정상적인 기능을 수행하는 문제를 발생시킬 수 있다. 이를 해결하기 위하여 본 논문에서 제안한 솔루션은 먼저 연산량이 큰 DNN에 터커 분해 기법을 적용하여 연산량을 감소시킨다. 그다음으로 DNN 모델들을 GPU 내부에서 은닉층 단위로 최대한 병렬적으로 수행될 수 있게 한다. 실험 결과 DNN의 추론 시간이 제안된 기법을 적용하기 전 대비 최대 75.6% 감소하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 문제 정의
Ⅲ. 문제해결 방법 및 설계
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001356430