메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
조윤환 (한양대학교) 서영덕 (서울대학교) 박대준 (한양대학교) 정제창 (한양대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2016년도 대한전자공학회 정기총회 및 추계학술대회
발행연도
2016.11
수록면
800 - 803 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning is definitely notable in various classification field. DNN(Deep Neural Network) is a kind of algorithm for deep learning. It becomes important to choose a suitable activation function to make learn the various DNN structure. In this paper, we summarize the history of activation function playing a key role in DNN and propose an improvement direction for state of the art activation function.

목차

Abstract
I. 서론
II. 본론
III. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001930417