메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ye-Rang Jeon (Keimyung Univ.) Hae-Woon Choi (Keimyung Univ.)
저널정보
한국기계가공학회 한국기계가공학회지 한국기계가공학회지 제21권 제6호
발행연도
2022.6
수록면
8 - 14 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study reports experiments were conducted to determine the quality of weld beads of different materials, Al and Cu. Among the lasers used to make battery cells for electric vehicles, non-destructive testing was performed using deep learning to determine the quality of beads welded with the ARM laser. Deep learning was performed using AlexNet algorithm with a convolutional neural network structure. The results of quality identification were divided into good and bad, and the result value was derived that all the results were in agreement with 94% or more. Overall, the best welding quality was obtained in the experiment for the fixed ring beam output/variable center beam output, in the case of the fixed beam (ring beam) 500W and variable beam (center beam) 1,050W; weld bead failure was seldom observed. The tensile force test to confirm the reliability of welding reported an average tensile force of 2.5kgf/mm or more in all sections.

목차

ABSTRACT
1. Introduction
2. Experiments
3. Results
4. Discussion and Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-581-001329722