메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amir Tjolleng (University of Ulsan) Kihyo Jung (University of Ulsan)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제41권 제1호
발행연도
2022.2
수록면
15 - 29 (15page)
DOI
10.5143/JESK.2022.41.1.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study developed an artificial neural network (ANN) model that can detect an early sign of drowsy driving (fighting-off drowsiness) based on electrocardiography (ECG) signals.
Background: Detecting an early state of drowsy driving is very important to prevent vehicle accidents on the road by providing appropriate interventions to the driver.
Method: The ECG signals for forty-three participants (mean age: 23.1, SD: 1.6) were recorded while performing a simulator-based monotonous driving for 20 minutes, and the ECG for twenty participants (mean age: 23.2, SD: 1.3) who suffered drowsiness were used in further analysis. The three driver states (normal, fighting-off drowsiness, and drowsy) were determined through participant"s subjective report and video recording analysis. Six ECG measures in time and frequency domains were derived from the ECG and pre-processed to compensate individual variations in heart response.
Results: The model was trained using a feedforward network with a scaled conjugate gradient, and its average accuracy was over 99% for the training and testing data.
Conclusion: This study showed that the ECG can be used as a biometric indicator for the detection of the driver"s drowsiness condition.
Application: The proposed model would be useful to the development of drowsiness detection system that can provide early warning to the driver at the onset of drowsiness.

목차

1. Introduction
2. Method and Materials
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0