메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성효은 (국민대학교) 유현도 (국민대학교) 염용진 (국민대학교) 강주성 (국민대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제2호
발행연도
2022.4
수록면
391 - 404 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Aron Gohr는 경량 블록암호 Speck에 대해 딥러닝 기술에 기반한 암호분석 기법을 제안하였다. 이는 기존의 차분분석 방식보다 높은 정확도로 선택적 평문 공격을 가능하게 한 방법이다. 본 논문에서는 이러한 딥러닝 기반 암호분석의 동작 원리에 대해 확률분포를 이용하여 분석하고 이를 경량 블록암호 Simon에 적용한 결과를 제시한다. 또한, 암호분석 알고리즘 내부에서 신경망의 예측값 확률분포가 Speck과 Simon의 각 라운드 함수 특성에 따라 차이가 있음을 규명한다. 이를 통해 Aron Gohr가 제시한 암호분석의 핵심기술인 신경망 구분자의 성능 개선 방향을 제시한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 딥러닝 기반 Simon 차분분석
IV. 확률분포를 활용한 신경망 구분자의 동작 분석
V. 구분자 개선방안
VI. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001127804