메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunday Ajala (Norfolk State University) Emmanuel Adetiba (Covenant University) Oluwaseun T. Ajayi (Illinois Institute of Technology) Abdultaofeek Abayomi (Mangosuthu University of Technology) Anabi Hilary Kelechi (Covenant University) Joke A. Badejo (Covenant University) Sibusiso Moyo (Durban University of Technology) Murimo Bethel Mutanga (Mangosuthu University of Technology)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.1
발행연도
2022.3
수록면
25 - 42 (18page)
DOI
10.5626/JCSE.2022.16.1.25

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Identification of signal waveforms is highly critical in 5G communications and other state-of-the-art radio technologies such as cognitive radios. For instance, to achieve efficient demodulation and spectrum sensing, cognitive radios need to implement automatic modulation recognition (AMR) of detected signals. Although many works have been reported in the literature on the subject, most of them have mainly focused on the additive white Gaussian noise (AWGN) channel. However, addressing the AWGN channel, only, does not sufficiently emulate real-time wireless communications. In this paper, we created datasets of six modulation schemes in GNU Radio. Wireless signal impairment issues such as center frequency offset, sample rate offset, AWGN, and multipath fading effects were applied for the dataset creation. Afterward, we developed AMR models by training different artificial neural network (ANN) architectures using real cepstrum coefficients (RCC), and minimum-phase reconstruction coefficients (MPRC) extracted from the created signals. Between these two features, MPRC features have the best performance, and the ANN architecture with Levenberg-Marquardt learning algorithm, as well as logsig and purelin activation functions in the hidden and output layers, respectively, gave the best performance of 98.7% accuracy, 100% sensitivity, and 99.33% specificity when compared with other algorithms. This model can be leveraged in cognitive radio for spectrum sensing and automatic selection of signal demodulators.

목차

Abstract
I. INTRODUCTION
II. MATERIALS AND METHODS
III. RESULTS
IV. DISCUSSION
V. CONCLUSION
REFERENCES

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0