메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정치윤 (한국전자통신연구원) 김무섭 (한국전자통신연구원) 정현태 (한국전자통신연구원) 정승은 (한국전자통신연구원)
저널정보
조선대학교 IT연구소 정보기술융합공학논문지 정보기술융합공학논문지 제10권 제2호
발행연도
2020.12
수록면
37 - 47 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자의 이동수단을 분류하여 그 특성을 이해하는 것은 여행 패턴 분석, 목적지 및 이동 경로 예측 등 위치기반 서비스를 제공하기 위한 핵심정보로 활용될 수 있다. 따라서 GPS 데이터를 사용하여 사용자의 이동수단을 분류하는 방법에 관한 관심과 연구들이 증가하고 있다. 사용자의 이동수단을 분류하는 방법은 입력 GPS 데이터의 샘플링 주기에 따라 분류 정확도가 달라지며, GPS 데이터의 샘플링 주기는 수집 기기의 배터리 소모에 영향을 미친다. 따라서 본 논문에서는 GPS 궤적정보를 사용하여 이동수단을 분류하는 새로운 방법을 제안하고, GPS 데이터의 샘플링 주기가 이동수단분류 방법의 정확도 및 에너지 소비에 미치는 영향을 분석하였다. 이를 위하여 본 논문에서는 GPS궤적으로부터 속도, 가속도, 저크를 계산하여 다양한 통계적 특징을 추출하였으며, 이동 시간을 고려한 이동 방향의 변화 비율, 정지 비율, 속도 변화율을 특징으로 활용하는 이동수단 분류 방법을 제안하였다. 실험에서는 제안 방법과 기존의 방법을 다양한 기계학습 알고리즘을 사용하여 비교하였으며, 랜덤 포레스트 분류 알고리즘을 사용하는 경우 제안 방법이 기존 방법보다 2.3%~3% 이상 높은 정확도를 가지는 것을 확인하였다. 또한, 제안 방법을 사용하여 GPS 데이터의 샘플링 주기 변화에 따른 이동수단 분류 정확도 및 배터리 소비량을 분석하였다. 실험 결과, 샘플링 주기를 10초로 설정하면 분류 정확도는 최고 정확도 대비 0.6% 감소하지만, 배터리 소비량은 33% 이상 감소하여 이동수단 분류 정확도의 손실 없이 에너지 소모를 최소화하는 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. GPS 기반 이동수단 분류 방법
4. 실험 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0