메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangwoong Kim (Chung-Ang University) Jaeyeong Ryu (Chung-Ang University) Jiwoo Jeong (Chung-Ang University) Dongyeong Kim (Chung-Ang University) Youngho Chai (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소MINT Moving Image & Technology (MINT) MINT: Moving Image & Technology, Vol.2, No.1
발행연도
2022.2
수록면
1 - 8 (8page)
DOI
10.15323/MINT.2022.02.2.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we propose a motion recognition system for each direction of push-up activity using an extreme learning machine algorithm. The recognition process consists of three parts: the first is the process of reading the motion data, during which the data acquired from the motion capture system are entered the memory of the system. The system then extracts a feature vector from the motion data. The 3D position data converted from the quaternion data value of the motion data are projected onto the X-Y, Y-Z, and Z- X planes of the system, and the values are used as the final feature vector. Feature vectors projected onto each plane train different ELMs, and a total of three ELMs are learned. Finally, by inputting the test data to each learned ELM, the final recognition result value was derived. Before obtaining motion data as the data set to be trained, first, general push-ups performed in the correct posture were selected; second, the upper chest did not go down all the way; third, only the buttocks came up when bending and lifting; finally, when bending, the elbows moved away from the upper chest. These motions are mixed to build a test dataset.

목차

Abstract
1. Introduction
2. Related works
3. Directional motion recognition system
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-688-001072204