메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정현용 (Seoul National University) 이대경 (Dongguk University) John Losey (Cornell University)
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2022 학술대회 발표 논문집
발행연도
2022.2
수록면
481 - 485 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is difficult to evaluate the reduction rate of a species that has a high number of habitats and populations. In addition to the amount of insufficient data present to cover the entire habitat, the inconsistency of study areas and investigation efforts between monitoring programs is a major obstacle to quantifying long-term population decline. To overcome the bias from (1) data insufficiency and (2) inconsistency derived from compiling various investigative sources, including citizen science projects, this study proposes a procedure to estimate the reduction rate using machine learning. After predicting the possibility of occupancy every year through a fitted model in all habitats where target species have been recorded, a trend line is formulated and used for approximating reduction. By the newly described oversampling approach, including indirect occupancy data points, we were able to secure about three times the amount of information on the direct occupancy data points. Compared to the model that learned only the direct occupancy data set, the performance matrix of the model utilizing the new oversampling approach was about 10% higher overall. As a result, the estimated reduction rate of Coccinella novemnotata was 31.2% over the past decade, which corresponds to the VU status in the IUCN Red List. In addition, the machine learning method showed a lower degree of fluctuation in approximations (within 13%) than the relative abundance method (within 42%) and the segmented linear extrapolation method (within 55%), when we integrated 10% of fake information into the data set.

목차

ABSTRACT
1. INTRODUCTION
2. MATERIALS AND METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0