메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정순호 (Pukyong National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제2호(통권 제215호)
발행연도
2022.2
수록면
43 - 51 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문은 문법적 추론에서 유전자 알고리즘의 진화대상으로 테이블 표현(Tabular representation: TBL)을 이용한 문맥자유 문법(Context-free grammar: CFG)을 학습하는 기존의 방법을 개선하여 더 효율적인 결과를 얻은 그 방법과 실험 결과를 제시한다. 이 논문에서 소개하는 개선된 점은 두 가지로, 첫째는 적합도 함수를 긍정과 부정의 예들에 대한 학습 평가를 동시에 반영하도록 수식을 개선하고 둘째는 긍정적 학습 예들로부터 생성된 TBL들에 대응되는 파티션(partition)들을 학습문자열의 크기별로 분류하여 부류별 진화 과정을 진행하며 그 성공률에 따라 구성 비율을 조정하여 다음세대에 생존에 연계하는 학습 방법을 적용한다. 이 개선점들은 학습 예들의 크기에 따른 TBL의 크기가 여러 개체들 사이의 교배와 일반화 단계에서 복잡성과 어려움을 해결하여 기존 방법보다도 좋은 효율을 제공한다. 이 연구는 기존 방법에서 제안된 언어들로 실험하고 그 결과는 기존 방법보다 같은 성공률을 갖는 상태에서 학습 완성의 평균 세대수가 적게 걸리는 다소 빠른 세대속도의 결과를 보여준다. 앞으로 이 방법은 확장된(extended) CYK에 시도할 수 있으며 더 나아가 좀 더 복잡한 파싱 테이블(parsing table)에도 적용할 가능성을 제시한다.

목차

Abstract
요약
I. Introduction
II. Related Work
III. The Proposed Scheme
IV. Implementation and experimental results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0