메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Abdullah (Inje University) Ali Sikandar (Inje University) Ali Hussain (Inje University) Ali Athar (Inje University) M. Mohsin (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
8 - 12 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Algae growth is an automatic process, and it is very dangerous for aquatic life and human health when its growth concentration is increased. Harmful algae bloom (HAB) is arisen due to change in climate and temperature, additionally, it is found in the lake, river, pond, and freshwater reservoirs. It is necessary to monitor and take the possible solution to stop their growth. It consumes sunlight, then produces a toxin and harmful compound, which destroy the ecosystem of aquatic life. To identify and recognize HAB by a human being is a tedious and expensive task. Advanced computer vision, machine learning, and deep learning play a vital role to do this job accurately. In this paper, we present algae classification using a transfer learning technique based on a convolution neural network (CNN). The microscopic algae image data having four classes are used to train VGG16, in which the upper layer of the model learn general feature and the lower layer model extract specific feature from the trained model. Based on the extracted feature, the trained model classifies the images into Closterium, Cosmarium, Scenedesmus, and Spirogyra. The accuracy of our proposed model is 96%, which depicts the model is robust and reliable for classification.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGY
IV. RESULTS AND DISCUSSION
V. CONCLUSION
VI. FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0