메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Huhn Kim (Seoul National University of Science and Technology) Wonjoo Chang (Seoul National University of Science and Technology)
저널정보
한국디자인학회 Archives of Design Research Archives of Design Research Vol.35 No.1 (Wn.141)
발행연도
2022.2
수록면
93 - 112 (20page)
DOI
10.15187/adr.2022.02.35.1.93

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background: In recent times, drones have been widely utilized for various purposes. In particular, drone control from a first-person view (FPV), in which the pilot controls the drone as if riding in the drone"s cockpit by using a display device or a head-mounted display, is becoming increasingly popular. Therefore, a controller for safe and convenient FPV drone control is necessary.
Methods: This study investigates the effectiveness of a motion controller that manipulates drone movements based on its own movements as compared to that of a conventional joystick controller. We designed and developed the motion-matching controller and drone for experimental evaluation. In the experiment, participants perform the task of maneuvering a drone from origin to destination on a given course with the developed motion and joystick controllers.
Results: The experimental results showed that the motion-matching controller was superior to the joystick controller in terms of task success rate, number of collisions, task completion time, number of failed attempts, and subjective evaluation, particularly in the FPV mode. Notably, participants could perform complex manipulations that require controlling two or more axes simultaneously.
Conclusions: The motion controller can be employed to enable improved intuitiveness and usability for personal or industrial applications that require drones to be operated in the FPV mode.

목차

Abstract
1. Introduction
2. Development of a motion-matching drone controller
3. Experiment
4. Result
5. Discussion and Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-658-000205949