메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영웅 (경희대학교) 김동현 (한국전자통신연구원) 정세윤 (한국전자통신연구원) 최진수 (한국전자통신연구원) 김휘용 (경희대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제1호
발행연도
2022.1
수록면
31 - 43 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전통적인 비디오 압축은 움직임 예측, 잔차 신호 변환 및 양자화를 통한 하이브리드 압축 방식을 기반으로 지금까지 발전해왔다. 최근 인공 신경망을 통한 기술이 빠르게 발전함에 따라, 인공 신경망 기반의 이미지 압축, 비디오 압축 연구 또한 빠르게 진행되고 있으며, 전통적인 비디오 압축 코덱의 성능과 비교해 높은 경쟁력을 보여주고 있다. 본 논문에서는 이러한 인공 신경망 기반 비디오 압축 모델의 성능을 향상시킬 수 있는 새로운 방법을 제시한다. 기본적으로는 기존 인공 신경망 기반 비디오 압축 모델들이 채택하고 있는 변환 및 복원 신경망과 엔트로피 모델(Entropy model)을 이용한 율-왜곡 최적화(Rate-distortion optimization) 방법을 사용하며, 인코더 측에서 디코더 측으로 압축된 레이턴트 정보(Latent information)를 전송할 때 엔트로피 모델이 추정하기 어려운 정보의 값을 이동시켜 전송할 비트량을 감소시키고, 손실된 정보를 추가로 전송함으로써 손실된 정보에 대한 왜곡을 보정한다. 이러한 방법을 통해 기존의 인공 신경망 기반 비디오 압축 기술인 MFVC(Motion Free Video Compression) 방법을 개선하였으며, 실험 결과를 통해 H.264를 기준으로 계산한 BDBR (Bjøntegaard Delta-Bitrate) 수치(%)로 MFVC(-14%) 보다 두 배 가까운 비트량 감축(-27%)이 가능함을 입증하였다. 제안된 방법은 MFVC 뿐 아니라, 레이턴트 정보와 엔트로피 모델을 사용하는 신경망 기반 이미지 또는 비디오 압축 기술에 광범위하게 적용할 수 있다는 장점이 있다.

목차

요약
Abstract
I. 서론
II. 관련 연구
Ⅲ. 본론
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-000204175