메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mobeen Ur Rehman (Jeonbuk National University) Kil To Chong (Air University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,853 - 1,857 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In a variety of cellular and developmental processes, RNA alterations are important. Understanding the distributions of RNA modifications in genome sequences will lead to the discovery of their functions. In the last five years, computational methods for identifying RNA changes have been presented because experimental methods are time consuming and complex. However, both experimental and existing computational approaches have difficulties when it comes to concurrently recognizing changes on various nucleotides. Recently a machine learning based model for simultaneously identifying multiple kinds of RNA modifications was proposed however the neural networks for such problem are not explored yet. To solve this problem, we built a new predictor in this paper that can identify m6A, m5C, and m1A for alterations in Homo sapiens, Mus musculus, and Saccharomyces cerevisiae at the same time. The proposed model uses k-mer encoding scheme to encode the input sequence. The encoded sequence is used by convolution neural network which automatically learns the features and performs classification between modified and unmodified sequences. The 10-fold cross-validation results have exhibited improved results in comparison to the existing state-of-the-art results in literature.

목차

Abstract
1. INTRODUCTION
2. DATASET
3. PROPOSED FRAMEWORK
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0