메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,483 - 1,488 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We address the entry phase navigation of Entry, Descent, and Landing (EDL) operation for future Mars spacecraft missions. The entry phase is characterized by a highly non-linear motion model and is influenced by various aerodynamic forces. Current entry phase navigation systems exclusively use Inertial Measurement Units (IMUs) from atmospheric entry to parachute deployment phase. This results in large error accumulation. Such systems cannot meet the precision landing requirements of future missions. In addition, entry phase filters designed using inertial measurement systems alone cannot observe some states which leads to diverging state estimates. We present an integrated navigation scheme whereby a ground based radio ranging device telemeters spacecraft range and range rate information to a computer on board the spacecraft. This information is fused with inertial measurements to yield a more accurate navigation system than a standalone inertial system. The paper implements the navigation scheme using the continuous-discrete Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Performance comparisons are made between the two filters in terms of RMS error, runtime, and ease of implementation. Our results show comparable results between the two filters. The UKF provides better estimates of lift to drag ratio and downrange distance while the EKF outperforms the UKF with the rest of the state and parameter estimates. The fact that no Jacobian calculation is required in the case of the UKF renders it a more attractive option than the EKF in terms of ease of implementation for highly non linear systems.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. NON-LINEAR FILTER DESIGN
4. SIMULATION RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0