메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Felix Yustian Setiono (Japan Advanced Institute of Science and Technology) Armagan Elibol (Japan Advanced Institute of Science and Technology) Nak Young Chong (Japan Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,166 - 1,171 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, room categorization as part of indoor robot localization has become a vital topic for semantic mapping. One approach is implemented via scene understanding by integrating available object information in the scene. In this paper, a novel room association approach is proposed based on the prior knowledge of the object appearance frequency in the specific room category inside the house. The front interface of the proposed technique employs a state-of-the-art YOLOv2-based object detection framework. Detected objects and their prior appearance frequency information form the input to the proposed room association through a novel scoring approach. This scoring function avoids any limit on the number of detected objects and is capable of operating with a low object detection confidence level. The experimental results of the novel proposed technique show significant improvement over the previously developed room categorization approach. On average, the correctness score increased up to 0:8387 while the indecisiveness level of the object detection framework decreases.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTAL PROCEDURES
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0