메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,146 - 1,151 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Effective and intelligent exploration remains an unresolved problem for reinforcement learning. Most contemporary reinforcement learning relies on simple heuristic strategies which are unable to intelligently distinguish the well-explored and the unexplored regions of state space, which can lead to inefficient use of training time. We introduce entropy-based exploration (EBE) that enables an agent to explore efficiently the unexplored regions of state space. EBE quantifies the agent’s learning in a state using state-dependent action values and adaptively explores the state space, i.e. more exploration for the unexplored region of the state space. We perform experiments on a diverse set of environments and demonstrate that EBE enables efficient exploration that ultimately results in faster learning without having to tune any hyperparameter. The code to reproduce the experiments is given at https://github.com/Usama1002/EBE-Exploration and the supplementary video is given at https://youtu.be/nJggIjjzKic.

목차

Abstract
1. INTRODUCTION
2. PRELIMINARIES
3. ENTROPY-BASED EXPLORATION (EBE)
4. EXPERIMENTS
5. RELATEDWORK AND DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0