메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Gabriele Calzolari (Luleå University of Technology) Vidya Sumathy (Luleå University of Technology) Christoforos Kanellakis (Luleå University of Technology) George Nikolakopoulos (Luleå University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
319 - 324 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A new challenging area of research in autonomous systems focuses on the collaborative multi-agent exploration of unknown environments where a reliable communication infrastructure among the robotic platforms is absent. Factors like the proximity between agents, the characteristics of the network nodes, and environmental conditions can significantly impact data transmission in real-world applications. We present a novel decentralized collaborative architecture based on multi-agent reinforcement learning to address this challenge. In this framework, homogeneous agents autonomously decide to communicate or not, that is whether to share locally collected maps with other agents in the same communication networks or to navigate and explore the environment further. The agents’ policies are trained using the heterogeneousagent proximal policy optimization (HAPPO) algorithm and through a novel reward function that balances inter-agent communication and exploratory behaviors. The proposed architecture enhances mapping efficiency and robustness while minimizing inter-agent redundant data transmission. Finally, this paper demonstrates the advantages of the investigated approach compared to a strategy that does not incentivize communicative behaviors.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. SIMULATION EXPERIMENTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0