메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Anil Kurkcu (A<SUP>*</SUP>STAR) Cihan Acar (A<SUP>*</SUP>STAR) Domenico Campolo (Nanyang Technological University) Keng Peng Tee (A<SUP>*</SUP>STAR)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
731 - 738 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep reinforcement learning algorithms struggle in the domain of robotics where data collection is time consuming and in some cases safety-constrained. For sample-efficiency, curriculum learning has shown good results in deep learning-based methods. However, the issue lies on the generation of the curriculum itself, which the field of automatic curriculum learning is trying to solve. We present an automatic curriculum learning algorithm for discrete task-space scenarios. Our curriculum generation is based on difficulty measure between tasks and learning progress metric within a task. We apply our algorithm to a grasp learning problem involving 49 diverse objects. Our results show that a policy trained based on a curriculum is both sample efficient compared to learning from scratch and able to learn tasks that the latter could not learn within a reasonable amount of time.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. AUTOMATIC CURRICULUM LEARNING
4. EXPERIMENTAL SETUP & RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0