메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Omair Rashed Abdulwareth Almanifi (Universiti Malaysia Pahang) Mohd Azraai Mohd Razman (Universiti Malaysia Pahang) Ismail Mohd Khairuddin (Universiti Malaysia Pahang) Muhammad Amirul Abdullah (Universiti Malaysia Pahang) Anwar P.P. Abdul Majeed (Universiti Malaysia Pahang)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
602 - 606 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Colorectal cancer is a leading cause of death among the cancer family with a record of almost a million moralities in 2020 alone. While the treatment of colorectal cancer is very difficult, early diagnosis can help immensely with treatment, eliminating the risks, and recovery. In most cases early diagnosis is possible by catching any of the precursors of the disease, many of which appear on the Gastrointestinal tract. The use of machine learning to automate the process of gastrointestinal tract examination could accelerate the process of diagnosis, and increase its efficiency. This study suggests the use of the stacking ensemble method with multiple pre-trained CNN models for an accurate classification of GI tract using the publicly available dataset Kvasir. The pre-trained models used in this study were ResNet50, MobileNetV2, and Xception, all of which were ensembled and trained on a subset of the data and tested on another to eliminate bias, and evaluates the model’s capacity for generalization. Overall, the model demonstrated impressive performance at 99.2% accuracy, 0.9977 AUC, and 99.29% F1-score, especially compared to the individual constituent models and other models discussed in the review section of the study.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0