메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Amiir Haamzah Mohamed Ismail (Universiti Malaysia Pahang) Mohd Azraai Mohd Razman (Universiti Malaysia Pahang) Ismail Mohd Khairuddin (Universiti Malaysia Pahang) Rabiu Muazu Musa (Universiti Malaysia Terengganu) Anwar P.P. Abdul Majeed (Universiti Malaysia Pahang)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
592 - 595 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Radiography is used in medical treatment as a method to diagnose the internal organs of the human body from diseases. However, the advancement in machine learning technologies have paved way to new possibilities of diagnosing diseases from chest X-ray images. One such diseases that are able to be detected by using X-ray is the COVID-19 coronavirus. This research investigates the diagnosis of COVID-19 through X-ray images by using transfer learning and fine-tuning of the fully connected layer. Hyperparameters such as dropout, p, number of neurons, and activation functions are investigated on which combinations of these hyperparameters will yield the highest classification accuracy model. VGG19 learning model created by the Visual Geometry Group is used for extraction of features from the patient’s chest X-ray images. To evaluate the combination of various pipelines, the loss and accuracy graphs are used to find the pipeline which performs the best in classification task. The findings in this research will open new possibilities in screening method for COVID-19.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. METHODOLOGY
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0