메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송호준 (을지대학교 보건과학대학 방사선학과) 이은별 (을지대학교 보건과학대학 방사선학과) 조흥준 (을지대학교 보건과학대학 방사선학과) 박세영 (을지대학교 보건과학대학 방사선학과) 김소영 (을지대학교 보건과학대학 방사선학과) 김현정 (을지대학교 보건과학대학 방사선학과) 홍주완 (을지대학교 보건과학대학 방사선학과)
저널정보
한국방사선학회 한국방사선학회 논문지 한국방사선학회 논문지 제14권 제1호
발행연도
2020.1
수록면
39 - 44 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서 Normal 1,583장, Pneumonia 4,289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(11%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2×2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0