메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Babu Kaji Baniya (전북대학교) 이준환 (전북대학교)
저널정보
차세대컨버전스정보서비스학회 차세대컨버전스정보서비스기술논문지 차세대컨버전스정보서비스기술논문지 제4권 제2호
발행연도
2015.1
수록면
51 - 64 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Music genre and mood classifications are vital components of the field of multimedia retrieval and computational musicology. There is a growing interest in their development to address the difficulties of music categorization. The proposed method finds the unlabeled mood of a music genre with the help of labeled music mood datasets using different audio feature sets. Semi-supervised learning, which exploits huge amounts of unlabeled data, together with the limited labeled data for learning, has attracted a great deal of research interests. In this paper, we propose diverse audio features to precisely characterize music content. The feature sets belong to four groups: dynamic, rhythmic, spectral, and harmonic. A bin histogram was calculated from each feature to preserve all the important information associated with it. From the extracted audio features, we first tried to find the unlabeled mood of a music genre by using the labeled mood dataset. Harmonic and consistency (local and global) semi-supervised learning algorithms were considered to determine the unknown mood label of a music genre. In the next stage, we also evaluated whether unlabeled genre datasets would influence the mood classification accuracy. The unlabeled datasets were added to the training set in different proportions, so that the overall impact on classification accuracy could be analyzed. We improved the classification accuracy using an unlabeled music genre dataset in training. In the last section, we verified the classification accuracy by adding an unlabeled genre dataset to label mood with only the mood dataset (without adding a genre dataset).

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0