메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최경희 (경북대학교) 조덕호 (대구대학교)
저널정보
서울시립대학교 도시과학연구원 도시과학국제저널 도시과학국제저널 제19권 제3호
발행연도
2015.1
수록면
320 - 342 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Regional industry policies, including regional research and development (R&D) policies, have been initiated since 1998 in Korea. Despite the need for performance evaluation, the evaluation studies of the regional R&D support policies are lacking. This study analyses the effect of regional R&D support policies on firm's innovative and economic performance, focusing on Gyeongbuk province and adopting the propensity score matching (PSM) method to deal with the problem of selection bias. The characteristics that influence the participation of the firm in the regional R&D support were analysed as age, R&D department, exports, and the electronics/information appliances industry. The government needs to encourage the firms to have an absorptive capacity by establishing R&D departments. Regional R&D support was analysed to have no significant effects on the commercialization of developed technology, patent applications, new employees, and sales of new products. Though the effect is not statistically significant, it is nonetheless not meaningless, considering the short elapsed time. We can expect that the performance will improve in the future considering the fact that the outputs of the R&D programmes are generated over many years. The regional R&D support policies are expected to contribute to strengthening the regional innovation system by improving the regional firms’ innovative capacity in the long term. By adopting the PSM method, the study could potentially eliminate estimation error resulting from the simple comparison between the treatment group and the control group. It is necessary to take special note of the design of the survey in order to adopt the PSM method.

목차

등록된 정보가 없습니다.

참고문헌 (64)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0