메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
배창석 (대전대학교 IT융합공학부)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제11권 제4호
발행연도
2015.1
수록면
47 - 56 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 휴먼 행동 인식에 있어 수집 데이터의 특성에 따라 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선 부분에서 발생되는 문제을 군집들 사이의 거리를 기반으로 개선하는 알고리즘을 제안한다. PSO를 이용한 휴먼 행동 인식 방법은 입력 데이터를 경계값과 비교하여 인식하므로 상으로 빠르고 간단한 방 법이다. 하지만, 착용형 장치와 센서를 이용하는 휴먼 행동 인식에서와 같이 데이터 수집 환경의 변화에 따라 데이 터 특성의 변화가 심하여 학습 데이터와 테스트 데이터 사이의 차이가 생기는 경우 경계값 내에 포함되지 못하는 입 력 데이터들로 인해 성능이 하된다. 이를 해결하기 해 본 논문에서는 경계를 벗어나는 입력 데이터에 해 입력 데이터와 각 군집들의 경계와의 거리를 이용하여 행동 인식 성능을 개선한다. 실험 결과 앉기, 서기, 그리고 걷기와 같은 3 가지 휴먼 행동에 해 SVM (Support Vector Machine) MLP (Multi-Layer Perceptron)과 기존 PSO와 비교하여 최 약 18%의 인식 성능 개선을 가져오는 것을 확인하다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0