메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
현대문법학회 현대문법연구 현대문법연구 제82호
발행연도
2015.1
수록면
67 - 94 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Korean Oriental medicine has unequal access to some linguistic resources that it shares with biomedicine under the dual medical system despite their comparable legal positions. At the societal level, their asymmetric linguistic hegemonies are encapsulated in, and perpetuated by the Medical Law of Korea (e.g., Ch. 1, Article 2), which consistently marks the former with han- ‘Korean’, while unmarking the latter. However, there has been little empirical research that examines the unmarking norms in unfolding discourse. Noting the paucity, the present study investigates whether or not the societal marking norms persist at a situational level, particularly in unfolding Oriental medical interactions, and if so, in what forms. To do so, it qualitatively analyzes a data set of 15-hour-long naturally-occurring consultations between Oriental doctors and their patients. It evidences the consistency of the unmarking norms at the situational level and demonstrates that the first-mention references point to biomedical entities even within an Oriental interaction despite the absence of any linguistic markings that favor biomedicine. Thus, potentially ambiguous unmarked first-mentions such as uysa (sensayngnim) 'doctor,' pyengwen 'hospital/clinic,' yak 'drug,' and uyhak 'medical science' are macrolinguistically disambiguated. Consequently, they discursively materialize the macrolinguistic hegemony that biomedicine holds under the dual medical authority. The very fact that such one-way intertextual references pervade even unfolding Oriental discourse with little confusion and resistance is symbolic of biomedical dominance and power asymmetry between the two medicines.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0