메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sigrun Beige (Institute of Transport Research) Matthias Heinrichs (Institute of Transport Research) Daniel Krajzewicz (Institute of Transport Research) Rita Cyganski (Institute of Transport Research)
저널정보
서울시립대학교 도시과학연구원 도시과학국제저널 도시과학국제저널 제22권 제2호
발행연도
2018.1
수록면
201 - 215 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Decisions concerning household car ownership and the corresponding usage by the household members have significant implications on vehicle usage, fuel consumption and vehicle emissions. In this context, long-term and short-term choices which are strongly interrelated with one another play an important role. The long-term aspects involve the number of vehicles and their different types owned by a household as well as the assignment of a main driver, acting as the primary user, to each vehicle. The short-term dimension is represented by the vehicle allocation within a household at a daily level. In order to better understand the vehicle allocation process in the household context, the paper at hand investigates the importance of the short-term and long-term aspects in this process and explores several approaches to model them. For this purpose, four different methods for car allocation within a household, which strongly differ in their complexity, are implemented into a microscopic agent-based travel demand model and subsequently evaluated. The respective approaches are the following: (1) random car allocation, (2) car allocation by age, (3) car allocation by main driver assignment, and (4) car allocation by household optimization. Given a population of a bigger region that is described by a set of attributes, these various models determine which person of a household uses one of the available cars within the household for his/her daily trips. The simulations show that all four implementations of car allocation result in good representations (with deviations of less than 10%) of observed travel behaviour, their results being closer to each other than initially expected. Model (4), which optimizes car allocation for the entire household, shows the best results when compared to real-world data, while model (3) allows for the adaptation of changes in car ownership and/or socio-demographic and socio-economic attributes of the population.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0