메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yanfei Chen (University of Pittsburgh) Mahdis Shayan (University of Pittsburgh) 여운홍 (Virginia Commonwealth University) 천영재 (University of Pittsburgh)
저널정보
한국바이오칩학회 BioChip Journal BioChip Journal Vol.11 No.1
발행연도
2017.1
수록면
39 - 45 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Growing clinical needs for less invasive endovascular treatments necessitate the development of advanced biomaterials that exhibit low-profile and enhanced biocompatible properties. One of the endovascular devices is a stent graft, which contains a metallic backbone, covered with thin polymeric membranes such as Dacron® and expandable polytetrafluoroethylene (ePTFE). This device has been widely used for treating various vascular diseases and injuries. While the commercial materials including Dacron® and ePTFE have demonstrated a good feasibility, they were found to induce inflammatory vessel wall reactions with neointimal hyperplasia. Consequently, it causes re-narrowing of the lumen space and thrombogenic issues that ultimately lead the treatment failure. In this paper, we introduced a thin film nitinol (TFN) as an alternative graft material and evaluated the growth behavior of endothelial cells (EC) both qualitatively and quantitatively. As a proof-of-concept study, both untreated nonpatterned film (TFN) and surface treated TFN (S-TFN) materials were used. We compared the adhesion, growth, and proliferation of ECs on a solid (non-patterned) TFN with the two most widely-used commercial graft materials (Dacron® and ePTFE). The in vitro experimental results showed better adhesion and growth of ECs on TFN materials than either ePTFE or Dacron®. Specifically, S-TFN showed approximately twice number of ECs attached on the surface than any other materials tested in this study. In addition, in vivo swine study demonstrated that ECs had a relatively high proliferation on the micropatterrned S-TFN with ~50% surface coverage within two weeks. Both in vitro and in vivo study results of cell growth suggested that TFN materials could be a promising graft material for low-profile endovascular devices.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0