메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yulia Eka Putri (Andalas University) Suhana Mohd Said (University of Malaya) Refinel Refinel (Andalas University) Michitaka Ohtaki (Kyushu University) Syukri Syukri (Andalas University)
저널정보
대한금속·재료학회 Electronic Materials Letters Electronic Materials Letters Vol.14 No.5
발행연도
2018.1
수록면
556 - 562 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stackingperovskite-type SrTiO3layers and rock salt SrO layers along the crystallographic c direction. This paper discusses theproperties of the Sr2TiO4and (La, Sm)-doped Sr2TiO4RP phase synthesized via molten salt method, within the context ofthermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficientand low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4RP phase, in particular,the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In thiswork, the Sr2TiO4RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification ofits electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermalconductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which isbelieved to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermalconductivity of Sr2TiO4RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0