메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jianxin Fu (Zhejiang Agriculture and Forestry University) Huijuan Ning (Zhejiang Agriculture and Forestry University) Chao Zhang (Zhejiang Agriculture and Forestry University) Yirong Fan (Zhejiang Agriculture and Forestry University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.38 No.10
발행연도
2016.1
수록면
985 - 998 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Normal and the spontaneous spirally rolled leaves of Cymbidium goeringii var. longibracteatum were used for RNA sequencing analyses using the Illumina paired-end sequencing technique to figure out the differently- expressed genes in two samples. About 5.65 and 4.82 Gb sequencing data of raw reads were obtained from 2 cDNA libraries of normal and the spirally rolled leaves respectively. After data filtering, quality checks and de novo assembly, a total of 48,935 unigenes with an average sequence length of 820 nt were generated. In addition, the transcriptome change in normal and the spirally rolled leaves was investigated. With non-redundant annotation, 219 differentially expressed genes (DEGs) are identified, with 147 up-regulated genes and 72 down-regulated genes. Out of these DEGs, 21 DEGs (9.59 %) were involved in cell wall modeling enzymes, such as expansin, xyloglucan endo-transglycosylase, pectate lyase, cell wall-associated hydrolase. Besides, other DEGs were predominantly classified as genes involved in transcription factor and signal sense and transduction signaling. This study presents the first comprehensive characterization of the leave transcriptomes of Cymbidium goeringii var. longibracteatum. This study not only gave us valuable sequence resources of this species, but also provided theoretical foundation for cultivar breeding of leaf mutation in C. goeringii var. longibracteatum.

목차

등록된 정보가 없습니다.

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0