메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
RIA GUPTA (Shri Mata Vaishno Devi University) A.K. Das (Shri Mata Vaishno Devi University)
저널정보
장전수학회 Proceedings of the Jangjeon Mathematical Society Proceedings of the Jangjeon Mathematical Society Vol.21 No.1
발행연도
2018.1
수록면
23 - 31 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is evident from recent developments that topological structures which are more general than usual topology has many applications in allied branches of Science and Engineering. Cech closure space de ned by Cech [3] being a generalized topo- logical space has been utilized in digital topology [4, 10, 11], a theory developed in late 1960s for the study of geometric and topological properties of digital im- ages [5, 6, 8, 9]. Cech closure spaces are obtained from the Kuratowski ones by omitting the conditions of idempotency. In 2006, Allam, Bakeir and Abo-Tabl [1] introduced a new approach to de ne closure spaces through relations and stud- ied lower separation axioms, continuous functions and subspaces on closure spaces generated by relations. In 2008, the same authors [2] introduced some methods to generate topologies via binary relations. G. Liu [7] in 2010, utilized the notion of aftersets and foresets [1] which is renamed as R-left and R-right relative sets in [7]. In the present paper, we introduced and studied higher separation axioms on closure spaces generated by relations. Let X be any set then a relation on X is a subset of X x X, i.e., R⊆ X x X. The formula (x; y) ∈ R is abbreviated as xRy means that x is in relation R with y.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0