메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권용수 (전남대학교) 고원중 (성균관대학교)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.31 No.5
발행연도
2016.1
수록면
649 - 659 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Nontuberculous mycobacteria (NTM) are ubiquitous organisms; their isolation from clinical specimens does not always indicate clinical disease. The incidence of NTM lung diseases has been increasing worldwide. Although the geographic diversity of NTM species is well known, Mycobacterium avium complex (MAC), M. abscessus complex (MABC), and M. kansasii are the most commonly encountered and important etiologic organisms. Two distinct types of NTM lung diseases have been reported, namely fibrocavitary and nodular bronchiectatic forms. For laboratory diagnosis of NTM lung diseases, both liquid and solid media cultures and species-level identification are strongly recommended to enhance growth detection and determine the clinical relevance of isolates. Treatment for NTM lung diseases consists of a multidrug regimen and a long course of therapy, lasting more than 12 months after negative sputum conversion. For MAC lung disease, several new macrolide-based regimens are now recommended. For nodular bronchiectatic forms of MAC lung diseases, an intermittent three-time-weekly regimen produces outcomes similar to those of daily therapy. Treatment of MABC lung disease is very difficult, requiring longterm use of parenteral agents in combination with new macrolides. Treatment outcomes are much better for M. massiliense lung disease than for M. abscessus lung disease. Thus, precise identification of species in MABC infection is needed for the prediction of antibiotic response. Likewise, increased efforts to improve treatment outcomes and develop new agents for NTM lung disease are needed.

목차

등록된 정보가 없습니다.

참고문헌 (100)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0