메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김유철 (중앙대학교) 김재민 (중앙대학교) 김명영 (중앙대학교) 이원형 (중앙대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제31권 제1호
발행연도
2018.1
수록면
63 - 69 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근에는 기계 학습, 특히 심층 학습에 많은 연구가 진행되고 있다. 구글, 페이스 북과 같은 대기업이 인공 지능과 기계 학습에 관심을 가지고 있기 때문에, 이러한 연구는 날마다 발전하고있다. 기계 학습은 의학, 번역 및 IT와 같은 다양한 산업에서 사용될 것으로 기대됩니다. 게임 부문은 기계학습 기술적용의 효과가 예상되는 영역 중 하나라고 간주됩니다. 본 논문에서는 MMORPG-Tera의 게임 콘텐츠에서 몬스터의 승패를 예측하는 신경망을 Tensorflow를 통해 설계하였다. 이 모델은 1 개의 입력 레이어, 2 개의 숨겨진 레이어 및 1 개의 출력 레이어를 가지고 있다. 입력 레이어에는 8 개의 노드가 있고 각 숨겨진 레이어에는 16 개의 노드가 있으며 출력 레이어에는 1 개의 노드가 있다. 더 나은 결과를 위해 우리는 그라디언트 디센트, 시그 모이 드 (Sigmoid) 함수 및 Relu 함수 (Activate 함수)에 Adam을 사용한다. 준비된 데이터 세트의 마지막 부분은 테스트 데이터 용으로 사용되고 나머지는 학습 모델 용으로 사용되었다. 이 모델은 5 ~ 10 % 오차 이내의 확률을 예측할 수 있다. 데이터 세트의 부족은 만족스럽지 않은 점으로 남아 있으며, 충분한 데이터가 수집되고 더 개선 된 모델이 준비되면 오류를 더 줄일 수 있다. 그리고 제안된 모델은 앞으로 다른 게임이나 스포츠 게임에도 적용될 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0