메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최도헌 (상명대학교) 박소영 (상명대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제32권 제3호
발행연도
2019.1
수록면
59 - 64 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근, 여러 분야에서의 AI가 빠르게 성장하였고 게임에서도 큰 발전이 있었다. 게임 AI에 대한 접근 방법은여러 가지가 있다. 먼저 지도 학습 기반 접근 방법은 게임 플레이 데이터에서 학습하고, 플레이 행동을 흉내낸다. 그러나, 지도 학습 기반 접근 방법은 입력 자질을 선형 조합하므로, 복잡한 문제에는 성능 향상에 한계가 있다. 선형 조합에 따른 성능 한계를 개선하기 위해, 딥 뉴럴 네트워크 기반 접근방법은 지역적 특성 및전역적 특성을 개별적으로 각각 표현하기 위해 둘 이상의 뉴럴 네트워크를 사용한다. 그러나 딥 뉴럴 네트워크 기반 접근방법은 충분한 학습 집합이 필요하다. 학습 집합을 준비해야 하는 부담을 줄이기 위해서, 강화학습 기반 접근 방식은 Agent가 먼저 Action을 하고 이에 따른 보상을 분석하여 학습한다. 즉, 이 접근방법은 Agent가 최대 보상을 받도록 학습한다. 본 논문에서는 강화 학습을 통해 여러 게임에서 학습하는 AI를 제안한다. 제안하는 AI 모델은 개별 게임에서 Local Agent가 플레이하고, 여러 Local Agent에서 Global Agent 를 학습한다. 실험 결과, 한 게임에서 학습한 Agent는 학습했던 게임에서는 우수한 성능을 보여주었지만, 새로운 게임에서는 성능이 떨어졌다. 반면에, 두 게임에서 학습한 제안하는 Agent는 학습한 게임과 새로운 게임 모두에서 잘 적응했다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0