메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ebrahim Khalilzadeh Vahidi (Razi University) Maryam Mokhtari Malekabadi (Razi University) Abbas Rezaei (Kermanshah University of Technology) Mohammad Mahdi Roshani (Islamic Azad University) Gholam Hossein Roshani (Kermanshah University of Technology)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.19 No.4
발행연도
2017.1
수록면
435 - 442 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent years, the use of supplementary cementing materials, especially in addition to concrete, has been the subject of many researches. Rice husk ash (RHA) is one of these materials that in this research, is added to the roller compacted concrete as one of the pozzolanic materials. This paper evaluates how different contents of RHA added to the roller compacted concrete pavement specimens, can influence on the strength and permeability. The results are compared to the control samples and determined optimal level of RHA replacement. As it was expected, RHA as supplementary cementitious materials, improved mechanical properties of roller compacted concrete pavement (RCCP). Also, the application of adaptive neuro-fuzzy inference system (ANFIS) in predicting the permeability and compressive strength is investigated. The obtained results shows that the predicted value by this model is in good agreement with the experimental, which shows the proposed ANFIS model is a useful, reliable, fast and cheap tool to predict the permeability and compressive strength. A mean relative error percentage (MRE %) less than 1.1% is obtained for the proposed ANFIS model. Also, the test results and performed modeling show that the optimal value for obtaining the maximum compressive strength and minimum permeability is offered by substituting 9% and 18% of the cement by RHA, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0