메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유도일 (충북대학교)
저널정보
한국농업경제학회 농업경제연구 농업경제연구 제57권 제3호
발행연도
2016.1
수록면
209 - 233 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Focusing on the recent Big-Data boom, we develop vegetable price prediction models incorporating unstructured web-based data obtained from various online web-sites such as news, blogs, cafes, and so on. For empirical analysis, we employ Bayesian structural time series (BSTS) models with four unstructured indices using a text-mining tool, Textom; the amount of buzzwords, the amount of search keywords, the 'term frequency-inverse document frequency' (TF-IDF), and the 'degree-centrality-weighted term frequency' (DCTF). Then, the models are applied to three vegetable products of garlic, onion, and pepper in Korea. Results show that prediction performances can be remarkably improved by the introduction of unstructured indices for all products. The degree of improvement and the selection of unstructured indices can vary by vegetable products with their market and web-based environments.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0