메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Omid Salmani Nuri (Amirkabir University of Technology) Ebrahim Allahkarami (Amirkabir University of Technology) Mehdi Irannajad (Amirkabir University of Technology) Aliakbar Abdollahzadeh (Amirkabir University of Technology; Kashan Univ.)
저널정보
한국자원공학회 Geosystem Engineering Geosystem Engineering Vol.20 No.1
발행연도
2017.1
수록면
41 - 50 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Artificial neural network was used to predict the copper ore flotation indices of Separation Efficiency (SE) and Selectivity Index (SI) within different operational conditions. The aim was to predict SECu and SIFe and SIMo as a function of chemical reagent dosages (collector, frother, modifier), feed rate, solid percentage, and the feed grade of Cu, Fe, and Mo. A three-layered back propagation neural network with the structure of 9-10-10-3 is selected and standard Bayesian regularization was used as a training function in which, it is unnecessary the validation data-set being apart from the training data-set. The advantage of this algorithm is the minimization of weights and linear combinations of squared errors of producing the appropriate network. In the training and testing stages, the quite satisfactory correlation coefficient of 1 for three training outputs and .93, .9, and .88 for testing outputs was achieved. The results show that the proposed approach models can be used to determine the most advantageous industrial conditions for the expected SE and SI in the froth flotation process.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0