중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하본 연구는 스마트팩토리 도입의도에 영향을 미치는 요인을 실증 분석을 통해 확인하였다. 4차산업혁명의 핵심분야인 스마트팩토리 도입에 있어서 어떤 요인이 중요하게 영향을 미치는가에 대한 연구이며, 아직까지 스마트팩토리 분야에서 기술수용에 관한 연구가 부족한 상황에서 학술적 실무적 의의가 있다고 믿는다. 정보기술의 수용요인 연구에 설명력이 검증된 통합기술수용이론(UTAUT)을 기반으로 연구를 진행하였으며, UTAUT 이론의 4가지 독립변수인 성과기대, 노력기대, 사회적영향, 촉진조건에 추가로 스마트팩토리의 특성상 중요한 요인으로 예상되는 정부지원기대(Government Assistance Expectancy)를 독립변수에 추가하였다. 또한 스마트팩토리 기술수용의 기술적인 요인을 확인하고자 과업기술적합도(Task Technology Fit)변수 추가하여 스마트팩토리 도입의도에 미치는 영향관계를 실증 분석하였다. 또한 과업기술적합도의 선행변수인 과업특성(Task Characteristics)과 기술특성(Technology Characteristics)이 과업기술적합도에 어떠한 영향을 미치는지에 대한 분석도 진행하였다. 새로운 기술에 대한 신뢰(Trust)의 정도가 기술의 수용에 있어 매우 중요한 영향을 미칠 것으로 예상되어 신뢰를 매개변수로 추가하였다. 마지막으로 새로운 정보기술에 의한 혁신이 사용자에게 불가피하게 거부감을 야기할 수 있다는 선행연구들을 토대로 혁신저항(Innovation Resistance)을 조절역할을 하는 연구변수에추가하여 실증적 검증을 진행하였다. 연구 결과 성과기대, 사회적 영향, 정부지원기대, 과업기술적합도는 스마트팩토리 도입의도에 정(+)의 영향을 미쳤다. 영향력의 크기는 정부지원기대(β=.487) > 과업기술적합도(β=.218) > 성과기대(β=.205)> 사회적영향(β=.204) 순으로 나타났다. 과업특성과 기술특성은 모두 과업기술적합도에 정(+)의 영향이 확인되었으며, 과업특성(β=.559)이 기술특성(β=.328)보다 과업기술적합도에 더 영향이 큰 것으로 나타났다. 신뢰에 대한 매개 효과 검정에서 6개 독립변수 각각과 스마트팩토리 도입의도 간에 신뢰의 통계적으로 유의미한 매개역할은 확인되지 않았다. 혁신저항의 조절효과 검정을 통해, 혁신저항이 정부지원기대와 스마트팩토리 도입의도 간 정(+)의 조절역할을 하는 것으로 나타났다. 즉 혁신저항이 크면 클수록 정부지원기대가 스마트팩토리 도입의도에 미치는 영향력이 혁신저항이 적은 경우보다 커지는 것으로 나타났다.
This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.