메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유인박 (연세대학교)
저널정보
한국코퍼스언어학회 Corpus Linguistics Research Corpus Linguistics Research Vol.6 No.1
발행연도
2020.1
수록면
1 - 20 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Although there are many previous studies that examined quantitative fuzzy semantics, the contrastive study of hedges between the Chinese and Korean languages are still undetermined. Whether one is able to accurately use the hedge expressions reflects the pragmatic competence of the foreign language student. The purpose of this paper is to investigate the corresponding expression of the Korean hedges expression ‘-(으)ㄹ 것이다’ in official Chinese speech texts, and the application of the results from this research as a pragmatic approach to the teaching scene of Korean as a foreign language education to Chinese students. In this paper, the author selected eleven official speeches by the heads of the Chinese government and their Korean translations as the base of parallel corpus. By using the corpus, statistical methods and the pragmatic approach, we found 104 corpus pairs of Korean hedge expression ‘-(으)ㄹ 것이다’ in these eleven official speeches. The results of this study show that the Korean hedges expression ‘-(으)ㄹ 것이다’ is the translation of various Chinese expressions from the original speeches. Moreover, 51.92% of them are unmarked Chinese expressions. It shows that not only were the suggestive expressions translated into Korean euphemism, but also the translators used the Korean hedges expression ‘-(으)ㄹ 것이다’ consciously in order to make it suitable for Korean readers. It suggests that we need to demonstrate the hedges expression ‘-(으)ㄹ 것이다’ in Korean teaching context, in order to improve Chinese students’ pragmatic competence and increase the Korean learners and readers’ acceptance of such expressions.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0