메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cai Chen (Southwest Petroleum University) Han Zhang (Southwest Petroleum University) Arshid M. Ali (King Abdulaziz University) Hui Zhang (Southwest Petroleum University)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.15 No.3
발행연도
2020.1
수록면
49 - 63 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Oxygen defects of nanoflower TiO2 photo-catalyst was fabricated at the presence of hydrogen at different temperatures (100–600℃) and the concentrations of oxygen defects were firstly quantitatively analyzed by hydrogen programmed temperature reduction techniques (H2-TPR). Total oxygen defect concentration and surface oxygen defect concentration were consistent with XPS and EPR results, respectively. Even at the hydrogen thermal temperature of 600 ℃, the shape of TiO2 was still kept as nanoflower structure as characterized by SEM. However, the rutile and anatase coexist in the composition of crystal phase when hydrogen reduction temperature of the TiO2 catalyst reached 400 ℃ to 600 ℃ as proved by Raman and XRD results. TiO2 sample with oxygen defects shows excellent photo-catalytic activity for degradation of Direct Blue 78 (DB) regardless of ultraviolet light (the maximum degradation rate achieved within 100 min was 93.27%) or visible light (the maximum degradation rate achieved within 100 min was 88.25%). The photo-catalytic activity seems to be highly correlated with the surface oxygen defects of TiO2 catalyst. With surface oxygen-defect concentrations increase, the degradation ability on DB was significantly enhanced, while bulk oxygen defects had negligible effect on the photo-catalytic activity. The enhanced photo-catalytic performance of TiO2 with a fixed amount of oxygen defects was attributed to the strong capturing capability of the photo-generated electrons. In addition, the surface defects could also improve the photo-catalytic reaction efficiency.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0