메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박라온 (한국교원대학교) 고소정 (제주대학교사범대학부설고등학교) 김성백 (제주대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제17권 제2호
발행연도
2021.1
수록면
19 - 30 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기계학습을 통한 문제 해결을 위한 단계에서 가장 중요한 부분 중의 하나가 데이터셋을 구축하는 것이다. 기존의 데이터셋 구축 방법은 트레이닝 과정에서 소량의 이미지에 변화를 주어 데이터를 부풀리는 명령어를 사용하는 것과 ‘google 이미지 검색’에서 이미지 크롤링을 사용하는 것이 대부분이다. 하지만 이러한 방법들은 데이터로서 이미지의 신뢰성이 보장되어 있지 않는 경우가 자주 발생한다. 기계학습 중 딥러닝 트레이닝을 위해서는 신뢰성이 보장된 데이터셋이 구축되어야 한다. 이에 따라 본 연구에서는 신뢰성을 보장받을 수 있는 데이터셋을 구축하기 위한 도구를 설계 및 구현한다. 적은 노력으로 큰 데이터셋을 구축할 수 있는 방안을 고려하고, 그 방안을 통해 구축된 데이터셋의 신뢰성을 테스트한다. 신뢰성을 보증하기 위한 예시로 꽃 이미지 데이터셋을 구축하여 ‘이미지 검색 꽃 사전’에 적용한다. 적용 결과로, 사용자는 딥러닝 트레이닝 과정에서 필요한 데이터셋을 보다 쉽고 경제적으로 구축할 수 있고, 구축된 데이터셋을 통한 트레이닝에서의 신뢰성과 효율성이 있음을 보인다. 또한 본 연구의 아이디어를 기본으로 활용한다면, 데이터셋을 구축하고자 하는 대상의 특성이 변하더라도 대량의 이미지 데이터셋을 생산할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0