메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강영식 (세명대학교)
저널정보
대한설비관리학회 대한설비관리학회지 대한설비관리학회지 제24권 제4호
발행연도
2019.1
수록면
23 - 33 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Agriculture is a blind spot in policies of occupational safety and health because they are usually under 10 workers. So this industry is very important in order to prevent of industrial accidents because of poor safety management and safety consciousness. Above all, accurate prediction of the occupational accident rate and fatal accident rate in the agriculture is required to prevent the occupational accidents systematically and continuously. Therefore, this paper proposes very efficient policies for prevention of industrial accidents with these prediction results in the agriculture. Also, this paper describes the optimal occupational accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM) by static method, and kalman filtering model (KFM) by dynamic method with existing accident data in agriculture. In this paper, microsoft foundation class (MFC) software of Visual Studio 2008 was used to minimize SSE of the occupational accident rate and the fatal accident rate. The minimum value of SSE in the agriculture was found in 0.4970 and 17.8381 in the occupational accident rate and fatal accident rate, respectively. Accordingly, ARIMA model in the agriculture are ideally applied in the accident rate and fatal accident rate. Finally, this paper provides very efficient and strategic method for prevention of accident in agriculture through the trend of determined prediction model and analysis of accident data.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0