메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정혁 (중앙대학교)
저널정보
정보통신정책학회 정보통신정책연구 정보통신정책연구 제27권 제4호
발행연도
2020.1
수록면
95 - 127 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study examines firms’ propensity for innovative investment, such as intangible investment and R&D expenditures, by using rich panel data of Korean firms from the Survey of Business Activities. This topic has not been documented as much as the contribution of innovative investment to economic performance. The dynamic random effects probit estimations show not only that firms’ propensity for intangible investment is persistent and dependent on firms’ characteristics, but also that the dependence on firms’ factors varies across sectors. On the one hand, estimations show that the propensity for intangible investment is complementary with internal R&D expenditures, except among ICT manufacturing firms. Among intellectual property rights, patents (trademarks) are positively associated with intangible investment in the non-ICT manufacturing (service) sector. In general, firms’ affiliation with a parent company, or their status as listing companies, affects firms’ propensity for intangible investment positively. On the other hand, firms’ propensity for R&D expenditures exhibits stronger persistence than that for intangible investment. Non-ICT manufacturing firms exhibit the strongest persistence of R&D expenditures. While intangible investment is associated positively with propensity for R&D, patent rights are the only intellectual property rights showing positive connection to R&D expenditures. This effect is clearest among ICT manufacturing firms. In conclusion, this study contributes toward a better understanding of Korean firms’ innovative investment by highlighting the role of firm-level characteristics, but also by demonstrating the heterogeneity of factors across sectors.

목차

등록된 정보가 없습니다.

참고문헌 (54)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0