메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유형석 (고려대학교) 류회성 (고러대학교 인공지능학과) Christian Wallraven (고려대학교)
저널정보
대한시과학회 대한시과학회지 대한시과학회지 제22권 제3호
발행연도
2020.1
수록면
229 - 236 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
목적 : 인공지능의 기계학습 또는 심층학습을 이용한 연구가 다양한 분야에서 시도되고 있다. 본 연구는 공공시력데이터를 자동화 수집하고, 수집한 데이터를 기계학습에 적용 및 예측하였다. 다양한 학습모델간 성능을 비교함으로써, 시과학분야에서 적용 가능한 기계학습 최적화모델을 제시함에 있다. 방법 : 국민건강보험(NHISS) 및 통계포털(KOSIS)에 발표된 국민 시력분포 현황관련 자료를 특정 색인을 포함하는 자료검색기법인 크롤링(crawling)을 사용하여 검색 및 수집을 자동화하였다. 2011년부터 2018년까지 보고된 모든 자료를 수집하였으며, 데이터 학습을 위해 Linear Regression, LASSO, Ridge, Elastic Net, Huber Regression, LASSO/LARS, Passive Aggressive Regressor 그리고 Pansacregressor 총 8개 모델을 사용하여 각각 데이터 학습하였다. 결과 : 수집한 데이터를 기반으로 기계학습 모델을 통해 2018년을 예측하였다. 각 모델간 2018년도 실제-예측데이터 차이를 MAE(Mean Absolute Error)와 RMSE(Root Mean Square Error) 점수로 각각 나타냈다. 학습모델 별 차이 중 MAE 평가결과 모델간 우/좌 Linear Regression(0.22/0.22), LASSO(0.83/0.81), RIDGE(0.31/0.31), Elastic Net(0.86/0.84), Huber Regression(0.14/0.07), LASSO/LARS(0.15/0.14), Passive Aggressive Regressor (0.29/0.18) 그리고 RANSA Regressor(0.22/0.22)를 보였다. RMSE에서 Linear Regression(0.40/0.40), LASSO (1.08/1.06), Ridge(0.54/0.54), Elastic Net(1.19/1.17), Huber Regression(0.20/0.20), LASSO/LARS(0.24/0.23), Passive Aggressive Regressor(0.21/0.58) 그리고 RANSA Regressor(0.40/0.40) 각각 나타냈다. 결론 : 본 연구는 자동화 자료검색 및 수집을 위한 크롤링 기법을 이용하여 데이터를 수집하였다. 이를 기반으로 고전 선형모델을 기계학습에 적용할 수 있도록 하고, 데이터 학습을 위한 8개 학습모델들 간 성능을 비교하였다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0