메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Polat Sendur (Ozyegin University) Behnam Firouzi (Ozyegin University) Ahmad Abbasi (Ozyegin University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.28 No.1
발행연도
2021.1
수록면
121 - 142 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper we study the static deflection, natural frequency, primary resonance of an electrostatically actuated cracked gas sensor. Besides, a novel hybrid metaheuristic algorithm is proposed to detect the location and depth of possible crack on the microcantilever systems. The gas sensor configuration consists of a microcantilever with a rigid plate attached to its end. The nonlinear effects of the electrostatic force and fringing field are taken into account in the mathematical model. The crack is represented by a rotational spring. In the first part, the effect of crack on the static and dynamic pull-in instability are studied. The equations of motion are solved by the application of the perturbation methods. Next, an inverse problem is formulated to predict the location and depth of the crack in the gas sensor. For that purpose, the weighted squared difference of the analytical and predicted frequency response is considered as the objective function. The location and depth of the crack in the microsystem are determined using the hybrid Harris Hawk and Nelder Mead optimization algorithms. The accuracy and efficiency of the proposed algorithm are compared with the HHO, DA, GOA, and WOA algorithms. Taguchi design of experiments method is used in order to tune the parameters of optimization algorithms systematically. It is shown that the proposed algorithm can predict the exact location and depth of the open-edge crack on an electrostatically actuated microbeam with proof mass.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0