메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ali Mortazavi (Ege University)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.79 No.2
발행연도
2021.1
수록면
247 - 265 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The current investigation deals with assessing the search performance of a recently developed, parameter-free, and self-adaptive search algorithm so-called Interactive Fuzzy Search Algorithm (IFSA) in solving weight minimization of the constrained structural optimization problems with discrete variables. The proposed IFSA combines the navigation pattern of the Interactive Search Algorithm (ISA) with the decision-making competence of fuzzy reasoning. The fuzzy module of the proposed IFSA permanently monitors the search process and adjusts each agent's search behavior by considering the governing condition of the current problem. In structural optimization, due to construction limitations, it is more realistic to select the sizing variables from a discrete domain. Thus, in this study, to empirically evaluate the search capability of the IFSA, it is applied to solve a suite of structural optimization problems with the discrete design variables. The attained outcomes are compared with the ISA and some other related methods addressed in the relevant literature. The acquired accuracy level and demanded number of objective function evaluations indicates that the IFSA, comparatively, using lower computational cost could found lighter structural systems. Also, the comparison of the attained standard deviation values shows that the IFSA demonstrates higher stability during the optimization process. These superior outcomes designate that the fuzzy decision-making mechanism of the IFSA could work properly in dynamically adapting the search behavior of the algorithm with the governing condition of the current problem. Consequently, the promising gained results reveal that IFSA can effectively be applied in solving the structural optimization problems with discrete search domains.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0