메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임지영 (이화여자대학교) 최지수 (이화여자대학교) 김윤진 (이화여자대학교) 어정인 (이화여자대학교) 임규연 (이화여자대학교)
저널정보
한국교육공학회 Educational Technology International Educational Technology International Vol.20 No.2
발행연도
2019.1
수록면
223 - 255 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aims to draw implications for designing online tools to support monitoring in collaborative learning. For this purpose, eighteen research papers exploring learner dashboard and group awareness tools were analyzed. Driving questions for the analysis were 'who monitors whose learning' and 'which learning information is monitored.' The analytical frameworks used for this study included the followings: three modes of co-regulation in terms of who regulates whose learning (self-regulation in collaborative learning, other-regulation, and socially-shared regulation) and four categories of dashboard information in terms of which information is monitored (information about preparation, participation, interaction, and achievement). As a result, five design implications for learner dashboard supporting monitoring were drawn. a) Monitoring tools for collaborative learning should support not a single but multiple targets: learner oneself, peer learners, and the group as a whole. b) When supporting the monitoring of oneself, information about self and peers should be illustrated together so that they can be compared. c) Information on collaborative learning achievement should be provided in terms of the content of knowledge acquired rather than test scores. d) In addition to the information about the interaction between learners, the interaction between learners and learning materials can also be provided. e) There should be differences in a manner when providing the same information to the individual and group level.

목차

등록된 정보가 없습니다.

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0