메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gwangseon Jang (Korea Institute of Science and Technology Information(KISTI)) Myeong-Ha Hwang (Digital Solution Laboratory, Korea Electric Power Research Institute)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제12호
발행연도
2021.12
수록면
1,914 - 1,923 (10page)
DOI
10.5370/KIEE.2021.70.12.1914

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As Artificial Intelligence (AI) shows excellent performances, electric power industry also applies AI to various fields. Even though a lot of data and infrastructures for data analysis are prepared, AI experts in the industry are insufficient. Automated machine learning can be a solution in the industry to apply the excellence of AI to many fields despite the shortage of professionals. Recently, several automated machine learning services have shown good performances on general purpose. However, due to the specificity of data, they does not perform well in the electric power industry. Therefore, we develop an automated machine learning pipeline system based on beam search especially for electric power industry. The proposed system is applied to three real-word problems, one for each of regression, classification, and text classification. The significance of our work is first to apply automated machine learning to electric power industry with high performance. The performances of the models to predict hourly peak power demand and to detect illegal use of electricity for Bitcoin mining are improved by 3.42% and 3.23% respectively compared to the existing models. Moreover, our work shows 95.23% accuracy in classification of the questions’ indents of chatbot, which gives the possibility to replace the existing model.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed System
4. Experiments and Results
5. Conclusion
References

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0