메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준용 (숭실대학교) 김성흠 (숭실대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제12호
발행연도
2021.12
수록면
1,016 - 1,022 (7page)
DOI
10.5302/J.ICROS.2021.21.0145

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most machine vision solutions for intelligent transport systems begin with the extraction of hand-crafted visual features from traffic scenes. In this study, the category-specific information for detecting specific visual patterns was investigated by replacing machine vision solutions with a standard convolutional neural network (CNN)-based object detector, and three practical applications of the system were developed. First, our system learned important categories, such as pedestrian and vehicles, for traffic monitoring and management. In addition, while collecting related databases, we efficiently performed data augmentation and improved the recognition accuracy of the system for several user-defined events. Further, the displacement of the detected positions between consecutive frames was converted into the real-world distance to compute the physical velocity of a vehicle. Second, we developed a vision-based system for a real-time lane-level traffic congestion measurement. After tracking the detected vehicles, the estimated velocities of vehicles for each lane were averaged. Subsequently, traffic congestion was determined based on the number of detected vehicles and averaged velocity. Third, we presented a context-aware method for background maintenance. To handle dynamic background objects, we utilized a 2D object detector to identify the category-specific background patterns. The key observation was that the detected regions do not belong to a true background. Hence, we developed a new confidence map to update the static background model and exclude pre-learnt background objects for conventional background subtraction methods. In the study, more than eight user-defined events were suggested by the combination of traditional machine vision techniques and deep learning-based object detectors with a substantial number of training images. In addition, our key ideas were validated using various datasets, such as five different scenes for lane-level traffic congestion and two CCTV image sequences for object-aware background subtraction and unseen object detection in the challenging traffic congestion. Lastly, the suggested applications of this system for intelligent transport systems were successfully demonstrated.

목차

Abstract
I. 서론
II. 딥러닝 객체 인식을 통한 능동적 교통 관제 시스템
III. 차량 속도 추정 및 교통량 측정 방법
IV. 낙하물 검출을 위한 배경 차분 개선 기법
V. 실험 결과 및 토의
VI. 요약 및 향후 계획
VII. Acknowledgement
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-003-000045273